
4 March 2011 | www.thetestingplanet.com | Use #testingclub hashtag

In this article we’ll review three different techniques

you and your team can learn to make sure that unit

tests don’t become a burden to your team and your

organization.

1. Do test reviews

2. Separate Unit tests from other types of tests

3. Use Good naming Conventions

We’ve all heard of code reviews, but many of us don’t

actually do them. There are many reasons for this, but

there’s no denying that doing code reviews helps pre-

vent bugs and maintains a higher quality codebase.

a much lower cost. To perform a test review, simply

ask one of your colleagues to review the unit tests

that you’ve written, before checking them into the

source control system. Have them look at the test

names, at the overall readability of the test, whether

it actually asserts that something is true or false and

that it makes sense in the context of your application.

 Why the lower cost? Tests are very small

-

reate some scenario in the system, using pure code.

That makes them much more easily digestible for the

reader. Also, because unit tests inherently show the

requirement, it’s much easier to discover problems

in the developer’s understanding of the requirements

or problem domain.

 From my experience, test reviews can take a

tenth of the amount of time of a code review, maybe

even less.

 Test reviews can help discover several situ-

ations which could lead to failed agile adoption in

your team. For example, test reviews can detect if

you do indeed do the other practices mentioned in

the success of unit testing in your team.

 We’ve also released a free tool for helping

out with test reviews if you’re working with Visual

only one of its kind.

ways to

At Typemock, we try to make sure that unit tests are

written in their own projects, and not mixed in with

other types of tests. The main reason is that we want

developers to have an easy single click way to run

tests that will always pass. Since unit tests are sup-

posed to only run in memory, and not require any

test project failing will likely pay more attention to

-

tion or other false reasons. In other words, having

projects made up of just unit tests will give develop-

ers less false positives (tests that fail without there

actually being a bug in the code).

 If we mix unit tests and non-unit tests with

each other, we will have more false positives and

developers will stop caring about failed tests (it is

-

There are two important words here: the naming of

the tests has to be a convention used throughout the

company or project, and the naming convention has

to be good. What’s a good naming convention?

 One that captures three important key data:

The thing(s) under test, the scenario they will be going

through, and the expected behavior of the system.

 By leaving even one of these out of the

equation, you risk that people who read the test will

either not understand why it’s failing, or even not un-

Tests that are not readable will contribute to the lack

of collaboration and willpower from people who ac-

tually try to use your unit tests. If people don’t want

to use your unit tests, or maintain them, you’re on a

quick road to unit tests being a hassle and an incon-

venience to your team, instead of a help.

 A good naming convention we like is men-

tioned in Roy Osherove’s book “The Art Of Unit

Testing” (Manning, 2009). It follows the following

pattern:

Public void ThingUnderTest_Scenario_Expected-

Behavior()

{

//…

}

The underscores make it more readable and more

noticeable if the writer has left out one of the three

Driven Development (BDD) frameworks, those

three key parts are always there, just sometimes in a

different arrangement.

most important about real world unit testing. �

 in your

unit tests

� � � � � � � � � � � � 	
 � � �
 � 	 � �� � � � � � � � � � � � � � � � �
 � � � �� � � � � � �
 � � � � � � � � � 	 � � 	 �� � � � 	 � � � � � � � � 	 � � � � � � � �� � � 	 � � � � �
 � � � � � � � � � �
 � �� � � �
 � 	 � � � � � � � � � � � � 	 � �� � � � � � � � � �
 � � � � � � � � � �� � � � � 	 � � � � � � � �
 � � � � � � �

